Impact Force Reduction Using Variable Stiffness with an Optimal Approach for Falling Robots
نویسندگان
چکیده
The work described in this paper is focused on the reduction of the impact force exerted by the ground on a falling humanoid robot. It proposes the use of a variable stiffness in the arms's motors to prevent damages. The proposed work is applicable when the falling prevention techniques fail or when falling is unavoidable. This work proposes the generation of variable stiffness in a motor through the optimal design of a PID controller. The variation of the Q matrix in a LQR controller produces different levels of motor stiffness. The proposed variable stiffness is tested in a Darwin OP Robot. The performance of the proposed design is evaluated using the estimation of the impact force. Results show an impact force reduction on falling motions by means of stiffness variation.
منابع مشابه
A New Intelligent Approach to Patient-cooperative Control of Rehabilitation Robots
This paper presents a new intelligent method to control rehabilitation robots by mainly considering reactions of patient instead of doing a repetitive preprogrammed movement. It generates a general reference trajectory based on different reactions of patient during therapy. Three main reactions has been identified and included in reference trajectory: small variations, force shocks in a single ...
متن کاملStiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملFRAGILITY CURVES FOR STRUCTURES EQUIPPED WITH OPTIMAL SATMDs
In this paper, a procedure has been presented to develop fragility curves of structures equipped with optimal variable damping or stiffness semi-active tuned mass dampers (SATMDs). To determine proper variable damping or stiffness of semi-active devices in each time step, instantaneous optimal control algorithm with clipped control concept has been used. Optimal SATMDs have been designed based ...
متن کاملApproaches for Learning Human-like Motor Skills which Require Variable Stiffness During Execution
Humans employ varying stiffness in everyday life for almost all human motor skills, using both passive and active compliance. Robots have only recently acquired variable passive stiffness actuators and they are not yet mature. Active compliance controllers have existed for a longer time, but the problem of automatic determination of the necessary compliance to achieve a task has not been thorou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016